Citation¶
If you use mlxterp in your research, please cite it as follows:
BibTeX¶
@software{mlxterp2025,
author = {Sigurd Schacht},
title = {mlxterp: Mechanistic Interpretability for MLX},
year = {2025},
url = {https://github.com/coairesearch/mlxterp},
version = {0.1.0}
}
APA¶
Schacht, S. (2025). mlxterp: Mechanistic Interpretability for MLX (Version 0.1.0) [Computer software]. https://github.com/coairesearch/mlxterp
MLA¶
Schacht, Sigurd. mlxterp: Mechanistic Interpretability for MLX. Version 0.1.0, 2025. GitHub, https://github.com/coairesearch/mlxterp.
Related Work¶
If you use mlxterp, you may also want to cite the frameworks that inspired it:
nnsight¶
@software{nnsight2024,
author = {Fiotto-Kaufman, Jaden and others},
title = {nnsight: A Python package for interpreting language models},
year = {2024},
url = {https://nnsight.net}
}
nnterp¶
@software{nnterp2024,
author = {Butanium},
title = {nnterp: Unified LLM Interpretability Interface},
year = {2024},
url = {https://github.com/Butanium/nnterp}
}
MLX¶
@software{mlx2023,
author = {Apple Inc.},
title = {MLX: An array framework for Apple silicon},
year = {2023},
url = {https://github.com/ml-explore/mlx}
}
Acknowledgments¶
We thank:
- The MLX team at Apple for creating an excellent ML framework
- The nnsight and nnterp teams for pioneering clean interpretability APIs
- The mechanistic interpretability community for advancing the field
Contributing¶
Contributions to mlxterp are welcome! See the Contributing Guide for guidelines.