Skip to content

Citation

If you use mlxterp in your research, please cite it as follows:

BibTeX

@software{mlxterp2025,
  author = {Sigurd Schacht},
  title = {mlxterp: Mechanistic Interpretability for MLX},
  year = {2025},
  url = {https://github.com/coairesearch/mlxterp},
  version = {0.1.0}
}

APA

Schacht, S. (2025). mlxterp: Mechanistic Interpretability for MLX (Version 0.1.0) [Computer software]. https://github.com/coairesearch/mlxterp

MLA

Schacht, Sigurd. mlxterp: Mechanistic Interpretability for MLX. Version 0.1.0, 2025. GitHub, https://github.com/coairesearch/mlxterp.

If you use mlxterp, you may also want to cite the frameworks that inspired it:

nnsight

@software{nnsight2024,
  author = {Fiotto-Kaufman, Jaden and others},
  title = {nnsight: A Python package for interpreting language models},
  year = {2024},
  url = {https://nnsight.net}
}

nnterp

@software{nnterp2024,
  author = {Butanium},
  title = {nnterp: Unified LLM Interpretability Interface},
  year = {2024},
  url = {https://github.com/Butanium/nnterp}
}

MLX

@software{mlx2023,
  author = {Apple Inc.},
  title = {MLX: An array framework for Apple silicon},
  year = {2023},
  url = {https://github.com/ml-explore/mlx}
}

Acknowledgments

We thank:

  • The MLX team at Apple for creating an excellent ML framework
  • The nnsight and nnterp teams for pioneering clean interpretability APIs
  • The mechanistic interpretability community for advancing the field

Contributing

Contributions to mlxterp are welcome! See the Contributing Guide for guidelines.